晶体学点群

[拼音]:jingtixue dianqun

[英文]:crystallographic point groups

与晶体的32种对称元素系相对应的对称动作群。各种晶体的(理想)多面体外形会呈现出不同型别的对称性。这些晶体的对称性可用对称元素n重旋转轴

和n重反轴

组合成的各种对称元素系反映(

对应的最基本的对称动作是绕轴旋转360°/n,

对应的最基本对称动作是绕轴旋转360°/n紧接以一个倒反动作,倒反动作据以进行的点应在轴线上)。基于晶体内部是具有点阵式的三维周期性结构,可以证明,晶体中允许存在的对称轴的轴次n仅限于1、2、3、4、6,即晶体外形中可能呈现的对称元素只限旋转轴

和反轴

,此中一重反轴即对称中心,二重反轴即镜面。晶体外形可能归属的对称型别共有32种,对应于32种对称元素系。

由于32种对称元素系都至少有一个相交的公共点并各与一套能使晶体(理想)外形复原的点对称动作群(实行对称操作时,对称物体至少有一点是不动的动作,称为点对称动作)相对应,这32种对称元素系对应的对称动作群称做晶体学点群。

晶体在巨集观观察中,在平行方向上呈现为具有均匀性的物体。由于结构中任何对称动作所包含的平移已被均匀性所掩盖,晶体结构中含平移的螺旋轴和滑移面在晶体巨集观性质中将表现为相应的旋转轴和镜面。晶体巨集观性质和晶体外形的对称型别均以晶体微观对称性为基础,也即晶体学点群以晶体学空间群为基础。

熊夫利记号中大写字母 T、O、C、D、S代表四面体群、八面体群、双面群、反轴群等,小写字母i、s、v、h和d代表对称中心、镜面、通过主轴镜面、与主轴垂直镜面、等分两个副轴的镜面。单斜晶系一般取 b为主轴,其他晶系一般取c为主轴。

晶体在衍射效应中,若将比率极小的反常散射忽略不计,则衍射强度在三维空间中将呈现具有对称中心的对称性。这一实验现象称为夫里德耳定律。基于这一定律,晶体衍射强度分布的对称型别只能属于32个对称元素系中11个含对称中心者,与之对应的11个点群(即Ci、C2h、D2h、D3d、C3i、D6h、C6h、D4h、C4h、Th、Oh)称为劳厄点群。

更多信息: 金三角 资金盘